Avviso di Conferenza: Serena Carrara - "Understanding, Designing and Controlling Electrochemiluminescence" , Edificio C11, Aula A1 (III piano)

Tipologia evento: 
Data evento
Data inizio evento: 
07/07/2017 - 10:00
Data fine evento: 
07/07/2017 - 11:00
Data pubblicazione evento
Pubblicato il: 





University of Strasbourg, Institut de Science et d’Ingénierie Supramoléculaires (I.S.I.S.), France


Understanding, Designing and Controlling Electrochemiluminescence


Electrogenerated chemiluminescence (ECL) is a light emission phenomenon. It is generated from the relaxation of excited states produced by reacting species at the surface of an electrode.1

The initiation of the process by electrochemical reactions, together with the facile spatial and temporal control, and the possible choice of different electrode materials, make ECL highly versatile. ECL is superior in many respects to photoluminescence, due to its extremely low limits of detection facilitated by a very low background and high sensitivity.2 As a result it has emerged as one of the most important bioanalytical detection methods, with widespread applications. It has been used for the detection of co-reactants, ECL enhancers, and ECL quenchers. On the other hand, it has found employment in the detection of compounds through coupling with molecular recognition materials, such as antibodies, DNA, and aptamers.2 For the latter applications, great advances have been made in the development of new luminophores (e.g., iridium complexes and semiconductor nanocrystals),3,4 new co-reactants,5 and new signal amplification strategies (e.g., nanomaterial-based and/or enzymatic signal amplification strategies) to enhance sensitivity and multiplex analysis techniques, by using electrode arrays and bipolar electrodes coupled with luminophores with different emission wavelengths in order to explore ECL applications for scientific research.6




(1)          Bard, A. J. Electrogenerated Chemiluminescence; Marcel Dekker, Inc.: New York., 2004.

(2)          Miao, W. Chem. Rev. 2008, 108 (7), 2506.

(3)          Barbante, G. J.; Doeven, E. H.; Francis, P. S.; Stringer, B. D.; Hogan, C. F.; Kheradmand,
              P. R.; Wilson, D. J. D.; Barnard, P. J. Dalt. Trans. 2015, 44 (18), 8564.

(4)          Ding, Z.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Science, 2002, 296 (5571),

(5)          Carrara, S.; Arcudi, F.; Prato, M.; De Cola, L. Angew. Chem. Int. Ed. 2017, 56, 4757.

(6)          Liu, Z.; Qi, W.; Xu, G. Chem. Soc. Rev. 2015, 44 (10), 3117.

Ultimo aggiornamento: 04-07-2017 - 09:36